In the A.C. circuit given below, voltmeters $ V_1 $ and $ V_2 $ read 100 V each. Find the reading of the voltmeter $ V_3 $ and the ammeter A.
An alternating voltage is given by \( e = 8 \sin(628.4 t) \).
Find:
(i) Peak value of e.m.f.
(ii) Frequency of e.m.f.
(iii) Instantaneous value of e.m.f. at time \( t = 10 \, {ms} \)
A temperature difference can generate e.m.f. in some materials. Let $ S $ be the e.m.f. produced per unit temperature difference between the ends of a wire, $ \sigma $ the electrical conductivity and $ \kappa $ the thermal conductivity of the material of the wire. Taking $ M, L, T, I $ and $ K $ as dimensions of mass, length, time, current and temperature, respectively, the dimensional formula of the quantity $ Z = \frac{S^2 \sigma}{\kappa} $ is:
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
When voltage changes its direction after every half cycle is known as alternating voltage. The current flows in the circuit at that time are known as alternating current. The alternating current(AC) follows the sine function which changes its polarity concerning time. Most of the electrical devices are operating on the ac voltage.