We are given \(z = \frac{2 + i}{3 - i}\), and we need to find the imaginary part of \(z\).
To simplify the expression for \(z\), we multiply both the numerator and the denominator by the conjugate of the denominator, \(3 + i\):
\(z = \frac{2 + i}{3 - i} \times \frac{3 + i}{3 + i} = \frac{(2 + i)(3 + i)}{(3 - i)(3 + i)}\)
First, simplify the denominator:
\((3 - i)(3 + i) = 3^2 - i^2 = 9 - (-1) = 9 + 1 = 10\)
Now, simplify the numerator:
\((2 + i)(3 + i) = 2(3) + 2(i) + i(3) + i(i) = 6 + 2i + 3i + i^2 = 6 + 5i - 1 = 5 + 5i\)
Thus, we have:
\(z = \frac{5 + 5i}{10} = \frac{5}{10} + \frac{5i}{10} = \frac{1}{2} + \frac{i}{2}\)
The imaginary part of \(z\) is \(\frac{1}{2}\).
The answer is \( \frac{1}{2} \).
Let \( z \) satisfy \( |z| = 1, \ z = 1 - \overline{z} \text{ and } \operatorname{Im}(z)>0 \)
Then consider:
Statement-I: \( z \) is a real number
Statement-II: Principal argument of \( z \) is \( \dfrac{\pi}{3} \)
Then:
If \( z \) and \( \omega \) are two non-zero complex numbers such that \( |z\omega| = 1 \) and
\[ \arg(z) - \arg(\omega) = \frac{\pi}{2}, \]
Then the value of \( \overline{z\omega} \) is: