Question:

The imaginary part of \(z=\frac{2+i}{3-i}\) is

Updated On: Apr 4, 2025
  • \(\frac{5}{8}\)
  • \(\frac{-5}{8}\)
  • \(\frac{1}{2}\)
  • \(\frac{3}{4}\)
  • \(\frac{3}{8}\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

We are given \(z = \frac{2 + i}{3 - i}\), and we need to find the imaginary part of \(z\)

To simplify the expression for \(z\), we multiply both the numerator and the denominator by the conjugate of the denominator, \(3 + i\):

\(z = \frac{2 + i}{3 - i} \times \frac{3 + i}{3 + i} = \frac{(2 + i)(3 + i)}{(3 - i)(3 + i)}\)

First, simplify the denominator:

\((3 - i)(3 + i) = 3^2 - i^2 = 9 - (-1) = 9 + 1 = 10\)

Now, simplify the numerator:

\((2 + i)(3 + i) = 2(3) + 2(i) + i(3) + i(i) = 6 + 2i + 3i + i^2 = 6 + 5i - 1 = 5 + 5i\)

Thus, we have:

\(z = \frac{5 + 5i}{10} = \frac{5}{10} + \frac{5i}{10} = \frac{1}{2} + \frac{i}{2}\)

The imaginary part of \(z\) is \(\frac{1}{2}\).

The answer is \( \frac{1}{2} \).

Was this answer helpful?
0
0