Using the mirror formula:
\[
\frac{1}{f} = \frac{1}{v} - \frac{1}{u}
\]
Given that the object distance \( u = -25 \) cm, and the magnification \( m = \frac{-v}{u} = \frac{1}{2} \), we can find \( v \) and then solve for \( f \).
From magnification formula:
\[
m = \frac{-v}{u} = \frac{1}{2} \Rightarrow v = \frac{-u}{2} = \frac{-(-25)}{2} = 12.5 \, \text{cm}
\]
Now, using the mirror formula with \( u = -25 \) cm and \( v = 12.5 \) cm:
\[
\frac{1}{f} = \frac{1}{v} - \frac{1}{u} = \frac{1}{12.5} - \frac{1}{-25}
\]
Solving for \( f \), we get:
\[
\frac{1}{f} = \frac{1}{12.5} + \frac{1}{25} = \frac{2}{25} \Rightarrow f = 25 \, \text{cm}
\]
Thus, the answers are:
(i) \( v = 12.5 \, \text{cm} \)
(ii) \( f = 25 \, \text{cm} \)