Lets follow the table :
| R1 | R2 | R3 | T1 | RX | RY | RZ | T2 | |
| A | 2 H | 3 H | 1 L | 6 | 3 H | 7 | ||
| B | -2 L | -1 L | 1 L | -2 | -1 L | -1 | ||
| C | -2 L | -1 L | 1 L | -2 | -1 L | -5 | ||
| D | 2 H | -1 L | 1 L | 2 | -1 L | -1 |
Given the conditions for each scenario:
For scenario A, possible values for (R.y,R.z) are:
Based on these combinations, the bids should be:
This configuration satisfies all the given conditions and is therefore valid.
| R1 | R2 | R3 | T1 | RX | RY | RX | T2 | |
| A | 2 H | 3 H | 1 L | 6 | 3 H | -1 L | -1 H | 7 |
| B | -2 L | -1 7 | 1 L | -2 | -1 L | 3 H | 3 H | -1 |
| C | -2 L | -1 L | 1 L | -2 | -1 L | -1 L | -1 H | -5 |
| D | 2 L | -1 L | 1 L | 2 | -1 L | -1 L | -1 H | -1 |
The bids by Arun, Bankim, Charu and Dipak, respectively in the first round are HLLH
So, the correct option is (D): Hi, Lo, Lo, Hi.
Lets follow the table :
| R1 | R2 | R3 | T1 | RX | RY | RZ | T2 | |
| A | 2 H | 3 H | 1 L | 6 | 3 H | 7 | ||
| B | -2 L | -1 L | 1 L | -2 | -1 L | -1 | ||
| C | -2 L | -1 L | 1 L | -2 | -1 L | -5 | ||
| D | 2 H | -1 L | 1 L | 2 | -1 L | -1 |
Given the conditions for each scenario:
For scenario A, possible values for (R.y,R.z) are:
Based on these combinations, the bids should be:
This configuration satisfies all the given conditions and is therefore valid.
| R1 | R2 | R3 | T1 | RX | RY | RX | T2 | |
| A | 2 H | 3 H | 1 L | 6 | 3 H | -1 L | -1 H | 7 |
| B | -2 L | -1 7 | 1 L | -2 | -1 L | 3 H | 3 H | -1 |
| C | -2 L | -1 L | 1 L | -2 | -1 L | -1 L | -1 H | -5 |
| D | 2 L | -1 L | 1 L | 2 | -1 L | -1 L | -1 H | -1 |
Arun bid Hi in R1, R2, R, X, R.z
So, the correct answer is 4.
Lets follow the table :
| R1 | R2 | R3 | T1 | RX | RY | RZ | T2 | |
| A | 2 H | 3 H | 1 L | 6 | 3 H | 7 | ||
| B | -2 L | -1 L | 1 L | -2 | -1 L | -1 | ||
| C | -2 L | -1 L | 1 L | -2 | -1 L | -5 | ||
| D | 2 H | -1 L | 1 L | 2 | -1 L | -1 |
Given the conditions for each scenario:
For scenario A, possible values for (R.y,R.z) are:
Based on these combinations, the bids should be:
This configuration satisfies all the given conditions and is therefore valid.
| R1 | R2 | R3 | T1 | RX | RY | RX | T2 | |
| A | 2 H | 3 H | 1 L | 6 | 3 H | -1 L | -1 H | 7 |
| B | -2 L | -1 7 | 1 L | -2 | -1 L | 3 H | 3 H | -1 |
| C | -2 L | -1 L | 1 L | -2 | -1 L | -1 L | -1 H | -5 |
| D | 2 L | -1 L | 1 L | 2 | -1 L | -1 L | -1 H | -1 |
Bikram bid Lo in R1, R2, R3, R. X.
So, the correct answer is 4.
Lets follow the table :
| R1 | R2 | R3 | T1 | RX | RY | RZ | T2 | |
| A | 2 H | 3 H | 1 L | 6 | 3 H | 7 | ||
| B | -2 L | -1 L | 1 L | -2 | -1 L | -1 | ||
| C | -2 L | -1 L | 1 L | -2 | -1 L | -5 | ||
| D | 2 H | -1 L | 1 L | 2 | -1 L | -1 |
Given the conditions for each scenario:
For scenario A, possible values for (R.y,R.z) are:
Based on these combinations, the bids should be:
This configuration satisfies all the given conditions and is therefore valid.
| R1 | R2 | R3 | T1 | RX | RY | RX | T2 | |
| A | 2 H | 3 H | 1 L | 6 | 3 H | -1 L | -1 H | 7 |
| B | -2 L | -1 7 | 1 L | -2 | -1 L | 3 H | 3 H | -1 |
| C | -2 L | -1 L | 1 L | -2 | -1 L | -1 L | -1 H | -5 |
| D | 2 L | -1 L | 1 L | 2 | -1 L | -1 L | -1 H | -1 |
All the players made identical bids in R3 and R.z
So, the correct answer is 2 round.
Lets follow the table :
| R1 | R2 | R3 | T1 | RX | RY | RZ | T2 | |
| A | 2 H | 3 H | 1 L | 6 | 3 H | 7 | ||
| B | -2 L | -1 L | 1 L | -2 | -1 L | -1 | ||
| C | -2 L | -1 L | 1 L | -2 | -1 L | -5 | ||
| D | 2 H | -1 L | 1 L | 2 | -1 L | -1 |
Given the conditions for each scenario:
For scenario A, possible values for (R.y,R.z) are:
Based on these combinations, the bids should be:
This configuration satisfies all the given conditions and is therefore valid.
| R1 | R2 | R3 | T1 | RX | RY | RX | T2 | |
| A | 2 H | 3 H | 1 L | 6 | 3 H | -1 L | -1 H | 7 |
| B | -2 L | -1 7 | 1 L | -2 | -1 L | 3 H | 3 H | -1 |
| C | -2 L | -1 L | 1 L | -2 | -1 L | -1 L | -1 H | -5 |
| D | 2 L | -1 L | 1 L | 2 | -1 L | -1 L | -1 H | -1 |
Deepak got exactly one point in only R3.
So, the correct answer is 1.
Lets follow the table :
| R1 | R2 | R3 | T1 | RX | RY | RZ | T2 | |
| A | 2 H | 3 H | 1 L | 6 | 3 H | 7 | ||
| B | -2 L | -1 L | 1 L | -2 | -1 L | -1 | ||
| C | -2 L | -1 L | 1 L | -2 | -1 L | -5 | ||
| D | 2 H | -1 L | 1 L | 2 | -1 L | -1 |
Given the conditions for each scenario:
For scenario A, possible values for (R.y,R.z) are:
Based on these combinations, the bids should be:
This configuration satisfies all the given conditions and is therefore valid.
| R1 | R2 | R3 | T1 | RX | RY | RX | T2 | |
| A | 2 H | 3 H | 1 L | 6 | 3 H | -1 L | -1 H | 7 |
| B | -2 L | -1 7 | 1 L | -2 | -1 L | 3 H | 3 H | -1 |
| C | -2 L | -1 L | 1 L | -2 | -1 L | -1 L | -1 H | -5 |
| D | 2 L | -1 L | 1 L | 2 | -1 L | -1 L | -1 H | -1 |
R2 is correct answer
So, the correct answer is (D) : Second.
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: