Step 1: Identify M(x, y) and N(x, y)
Let
\[M = x y^2 + n x^2 y \text{and} N = x^3 + x^2 y\]
Step 2: Check condition for exactness
Equation is exact if:
\[
\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}
\]
Compute:
\[
\frac{\partial M}{\partial y} = 2xy + n x^2
\]
\[
\frac{\partial N}{\partial x} = 3x^2 + 2x y
\]
Equating:
\[
2xy + n x^2 = 3x^2 + 2x y \Rightarrow n x^2 = 3x^2 \Rightarrow n = 3
\]
Answer: 3