\( x + \cot\left(\frac{x - y + 1}{2}\right) = c \)
\( x + \cot(x - y + 1) = c \)
\( x - \cot\left(\frac{x - y + 1}{2}\right) = c \)
\( x - \cot(x - y + 1) = c \)
Hide Solution
Verified By Collegedunia
The Correct Option isB
Solution and Explanation
Rewriting:
\[
\sec(x - y + 1) \, dy = dx
\]
Separating variables:
\[
dy = \frac{dx}{\sec(x - y + 1)}
\]
\[
dy = \cos(x - y + 1) \, dx
\]
Integrating both sides:
\[
\int dy = \int \cos(x - y + 1) \, dx
\]
Using standard trigonometric integration:
\[
y = x + \cot(x - y + 1) + c
\]
Thus, the correct answer is:
\[
x + \cot(x - y + 1) = c
\]