Step 1: Convert tangent into sine and cosine.
\[
\frac{\sin(x+100^\circ)}{\cos(x+100^\circ)}
=\frac{\sin(x+50^\circ)\sin(x-50^\circ)}
{\cos(x+50^\circ)\cos(x-50^\circ)}
\]
Step 2: Cross multiply.
\[
\sin(x+100^\circ)\cos(x+50^\circ)\cos(x-50^\circ)
\]
\[
=\cos(x+100^\circ)\sin(x+50^\circ)\sin(x-50^\circ)
\]
Step 3: Apply trigonometric identities.
\[
\sin(4x+100^\circ)=-\sin50^\circ
\]
Step 4: Solve general solution.
\[
4x+100^\circ=n\pi+(-1)^n(-50^\circ)
\]
Step 5: Find valid $x\in(0,\pi)$.
\[
x=\frac{130^\circ}{4},\frac{210^\circ}{4},\frac{490^\circ}{4},\frac{570^\circ}{4}
\]
Step 6: Count solutions.
Total solutions $=4$.
Final conclusion.
The number of solutions is 4.