If $ \theta \in [-2\pi,\ 2\pi] $, then the number of solutions of $$ 2\sqrt{2} \cos^2\theta + (2 - \sqrt{6}) \cos\theta - \sqrt{3} = 0 $$ is:
The number of solutions of the equation $ \cos 2\theta \cos \left( \frac{\theta}{2} \right) + \cos \left( \frac{5\theta}{2} \right) = 2 \cos^3 \left( \frac{5\theta}{2} \right) $ in the interval \(\left[ -\frac{\pi}{2}, \frac{\pi}{2} \right ]\) is:
If C(diamond) \(\rightarrow\) C(graphite) + \(X\text{kJ mol}^{-1}\)
C(diamond) +\( O_2(g)\) \(\rightarrow\) \(CO_2(g) + Y\text{kJ mol}^{-1} \)
C(graphite) + \(O_2(g)\) \(\rightarrow\) \(CO_2(g) + Z\text{kJ mol}^{-1}\)
at constant temperature, then
