The reaction for the fusion of chromite ore is:
\[4\text{FeCr}_2\text{O}_4 + 8\text{Na}_2\text{CO}_3 + 7\text{O}_2 \rightarrow 8\text{Na}_2\text{CrO}_4 + 2\text{Fe}_2\text{O}_3 + 8\text{CO}_2.\]
Here: \(A = \text{Na}_2\text{CrO}_4\), \(B = \text{Fe}_2\text{O}_3\).
Step 1: Calculate the spin-only magnetic moment
The spin-only magnetic moment is given by:
\[\mu_s = \sqrt{n(n+2)} \, \mu_B,\]
where \(n\) is the number of unpaired electrons.
For \(\text{Na}_2\text{CrO}_4\):
Chromium in \(\text{Na}_2\text{CrO}_4\) is in the \(+6\) oxidation state (\(\text{Cr}^{6+}\)).
The electronic configuration of \(\text{Cr}^{6+}\) is \([\text{Ar}]3d^0\).
\(n = 0\), so \(\mu_s = 0 \, \mu_B\).
For \(\text{Fe}_2\text{O}_3\):
Iron in \(\text{Fe}_2\text{O}_3\) is in the \(+3\) oxidation state (\(\text{Fe}^{3+}\)).
The electronic configuration of \(\text{Fe}^{3+}\) is \([\text{Ar}]3d^5\).
\(n = 5\), so:
\[\mu_s = \sqrt{5(5+2)} = \sqrt{35} \approx 5.9 \, \mu_B.\]
Step 2: Sum of magnetic moments
The sum of spin-only magnetic moments of \(A\) and \(B\) is:
\[\mu_{\text{total}} = 0 + 5.9 = 5.9 \, \mu_B.\]
Rounding to the nearest integer:
\[\mu_{\text{total}} = 6 \, \mu_B.\]
Final Answer: 6 B.M.
Identify the correct orders against the property mentioned:
A. H$_2$O $>$ NH$_3$ $>$ CHCl$_3$ - dipole moment
B. XeF$_4$ $>$ XeO$_3$ $>$ XeF$_2$ - number of lone pairs on central atom
C. O–H $>$ C–H $>$ N–O - bond length
D. N$_2$>O$_2$>H$_2$ - bond enthalpy
Choose the correct answer from the options given below:
Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: