The function \( y(t) \) satisfies \[ t^2 y''(t) - 2t y'(t) + 2y(t) = 0, \] where \( y'(t) \) and \( y''(t) \) denote the first and second derivatives of \( y(t) \), respectively. Given \( y'(0) = 1 \) and \( y'(1) = -1 \), the maximum value of \( y(t) \) over \( [0, 1] \) is _________ (rounded off to two decimal places).
Step 1: Substitute the assumed solution \( y(t) = t^r \):
First, compute the first and second derivatives of \( y(t) \): \[ y'(t) = r t^{r-1}, \quad y''(t) = r(r-1) t^{r-2}. \] Now, substitute these into the differential equation: \[ t^2 (r(r-1) t^{r-2}) - 2t (r t^{r-1}) + 2t^r = 0. \] Simplify: \[ r(r-1) t^r - 2r t^r + 2t^r = 0. \] Factor out \( t^r \) (since \( t \neq 0 \)): \[ t^r \left[ r(r-1) - 2r + 2 \right] = 0. \] Simplifying the expression inside the brackets: \[ r(r-1) - 2r + 2 = r^2 - r - 2r + 2 = r^2 - 3r + 2. \] Thus, the characteristic equation is: \[ r^2 - 3r + 2 = 0. \] Step 2: Solve the characteristic equation:
Factor the quadratic equation:
\[ (r - 1)(r - 2) = 0. \] Therefore, the solutions are \( r = 1 \) and \( r = 2 \).
Step 3: General solution:
The general solution to the differential equation is:
\[ y(t) = C_1 t + C_2 t^2, \] where \( C_1 \) and \( C_2 \) are constants to be determined from the initial conditions.
Step 4: Apply the initial conditions:
We are given \( y'(0) = 1 \) and \( y'(1) = -1 \).
First, compute \( y'(t) \): \[ y'(t) = C_1 + 2C_2 t. \] Apply \( y'(0) = 1 \): \[ C_1 + 2C_2 \cdot 0 = 1 \quad \Rightarrow \quad C_1 = 1. \] Apply \( y'(1) = -1 \): \[ C_1 + 2C_2 \cdot 1 = -1 \quad \Rightarrow \quad 1 + 2C_2 = -1 \quad \Rightarrow \quad 2C_2 = -2 \quad \Rightarrow \quad C_2 = -1. \] Step 5: Final solution: - Thus, the solution for \( y(t) \) is: \[ y(t) = t - t^2. \] Step 6: Find the maximum value of \( y(t) \) over \( [0, 1] \):
To find the maximum value of \( y(t) \), take the derivative: \[ y'(t) = 1 - 2t. \] Set \( y'(t) = 0 \) to find the critical points: \[ 1 - 2t = 0 \quad \Rightarrow \quad t = \frac{1}{2}. \] Evaluate \( y(t) \) at \( t = \frac{1}{2} \): \[ y\left( \frac{1}{2} \right) = \frac{1}{2} - \left( \frac{1}{2} \right)^2 = \frac{1}{2} - \frac{1}{4} = \frac{1}{4}. \] Evaluate \( y(t) \) at the endpoints:
\( y(0) = 0 - 0 = 0 \),
\( y(1) = 1 - 1^2 = 0 \).
The maximum value of \( y(t) \) on \( [0, 1] \) is \( \frac{1}{4} \).
Thus, the maximum value of \( y(t) \) over \( [0, 1] \) is \( \frac{1}{4} \), or 0.25.
The op-amp and the 1 mA current source in the circuit of figure are ideal. The output of the op-amp is:
When the switch $S_2$ is closed, the gain of the programmable gain amplifier shown in the following figure is:
For the op-amp circuit shown in the figure below, $V_o$ is:
If the op-amp in figure is ideal, the output voltage Vout will be equal to:
Consider a part of an electrical network as shown below. Some node voltages, and the current flowing through the \( 3\,\Omega \) resistor are as indicated.
The voltage (in Volts) at node \( X \) is _________.
The 12 musical notes are given as \( C, C^\#, D, D^\#, E, F, F^\#, G, G^\#, A, A^\#, B \). Frequency of each note is \( \sqrt[12]{2} \) times the frequency of the previous note. If the frequency of the note C is 130.8 Hz, then the ratio of frequencies of notes F# and C is:
Here are two analogous groups, Group-I and Group-II, that list words in their decreasing order of intensity. Identify the missing word in Group-II.
Abuse \( \rightarrow \) Insult \( \rightarrow \) Ridicule
__________ \( \rightarrow \) Praise \( \rightarrow \) Appreciate