The function \( y(t) \) satisfies \[ t^2 y''(t) - 2t y'(t) + 2y(t) = 0, \] where \( y'(t) \) and \( y''(t) \) denote the first and second derivatives of \( y(t) \), respectively. Given \( y'(0) = 1 \) and \( y'(1) = -1 \), the maximum value of \( y(t) \) over \( [0, 1] \) is _________ (rounded off to two decimal places).
Step 1: Substitute the assumed solution \( y(t) = t^r \):
First, compute the first and second derivatives of \( y(t) \): \[ y'(t) = r t^{r-1}, \quad y''(t) = r(r-1) t^{r-2}. \] Now, substitute these into the differential equation: \[ t^2 (r(r-1) t^{r-2}) - 2t (r t^{r-1}) + 2t^r = 0. \] Simplify: \[ r(r-1) t^r - 2r t^r + 2t^r = 0. \] Factor out \( t^r \) (since \( t \neq 0 \)): \[ t^r \left[ r(r-1) - 2r + 2 \right] = 0. \] Simplifying the expression inside the brackets: \[ r(r-1) - 2r + 2 = r^2 - r - 2r + 2 = r^2 - 3r + 2. \] Thus, the characteristic equation is: \[ r^2 - 3r + 2 = 0. \] Step 2: Solve the characteristic equation:
Factor the quadratic equation:
\[ (r - 1)(r - 2) = 0. \] Therefore, the solutions are \( r = 1 \) and \( r = 2 \).
Step 3: General solution:
The general solution to the differential equation is:
\[ y(t) = C_1 t + C_2 t^2, \] where \( C_1 \) and \( C_2 \) are constants to be determined from the initial conditions.
Step 4: Apply the initial conditions:
We are given \( y'(0) = 1 \) and \( y'(1) = -1 \).
First, compute \( y'(t) \): \[ y'(t) = C_1 + 2C_2 t. \] Apply \( y'(0) = 1 \): \[ C_1 + 2C_2 \cdot 0 = 1 \quad \Rightarrow \quad C_1 = 1. \] Apply \( y'(1) = -1 \): \[ C_1 + 2C_2 \cdot 1 = -1 \quad \Rightarrow \quad 1 + 2C_2 = -1 \quad \Rightarrow \quad 2C_2 = -2 \quad \Rightarrow \quad C_2 = -1. \] Step 5: Final solution: - Thus, the solution for \( y(t) \) is: \[ y(t) = t - t^2. \] Step 6: Find the maximum value of \( y(t) \) over \( [0, 1] \):
To find the maximum value of \( y(t) \), take the derivative: \[ y'(t) = 1 - 2t. \] Set \( y'(t) = 0 \) to find the critical points: \[ 1 - 2t = 0 \quad \Rightarrow \quad t = \frac{1}{2}. \] Evaluate \( y(t) \) at \( t = \frac{1}{2} \): \[ y\left( \frac{1}{2} \right) = \frac{1}{2} - \left( \frac{1}{2} \right)^2 = \frac{1}{2} - \frac{1}{4} = \frac{1}{4}. \] Evaluate \( y(t) \) at the endpoints:
\( y(0) = 0 - 0 = 0 \),
\( y(1) = 1 - 1^2 = 0 \).
The maximum value of \( y(t) \) on \( [0, 1] \) is \( \frac{1}{4} \).
Thus, the maximum value of \( y(t) \) over \( [0, 1] \) is \( \frac{1}{4} \), or 0.25.
Two resistors are connected in a circuit loop of area 5 m\(^2\), as shown in the figure below. The circuit loop is placed on the \( x-y \) plane. When a time-varying magnetic flux, with flux-density \( B(t) = 0.5t \) (in Tesla), is applied along the positive \( z \)-axis, the magnitude of current \( I \) (in Amperes, rounded off to two decimal places) in the loop is (answer in Amperes).
A 50 \(\Omega\) lossless transmission line is terminated with a load \( Z_L = (50 - j75) \, \Omega.\) { If the average incident power on the line is 10 mW, then the average power delivered to the load
(in mW, rounded off to one decimal place) is} _________.
In the circuit shown below, the AND gate has a propagation delay of 1 ns. The edge-triggered flip-flops have a set-up time of 2 ns, a hold-time of 0 ns, and a clock-to-Q delay of 2 ns. The maximum clock frequency (in MHz, rounded off to the nearest integer) such that there are no setup violations is (answer in MHz).
The diode in the circuit shown below is ideal. The input voltage (in Volts) is given by \[ V_I = 10 \sin(100\pi t), \quad {where time} \, t \, {is in seconds.} \] The time duration (in ms, rounded off to two decimal places) for which the diode is forward biased during one period of the input is (answer in ms).