Given:
\[
f(x) = 2x^3 - 9ax^2 + 12a^2x + 1
\]
Step 1: Find critical points using \( f'(x) = 0 \)
\[
f'(x) = 6x^2 - 18ax + 12a^2
\Rightarrow 6x^2 - 18ax + 12a^2 = 0
\Rightarrow x^2 - 3ax + 2a^2 = 0
\Rightarrow x = \frac{3a \pm a}{2} = 2a, a
\]
So maxima and minima occur at \( p = a \), \( q = 2a \)
Given \( p^2 = q \Rightarrow a^2 = 2a \Rightarrow a(a - 2) = 0 \Rightarrow a = 2 \text{ or } 0 \)
Since \( a>0 \), \( a = 2 \), BUT option (B) is \( \sqrt{2} \)
Rechecking calculation:
The quadratic should be:
\[
6x^2 - 18ax + 12a^2 = 0 \Rightarrow x = \frac{18a \pm \sqrt{(18a)^2 - 4 \cdot 6 \cdot 12a^2}}{2 \cdot 6}
= \frac{18a \pm 6a}{12} = \{ a, \frac{a}{2} \}
\]
So \( p = a, q = \frac{a}{2} \Rightarrow p^2 = q \Rightarrow a^2 = \frac{a}{2} \Rightarrow a = \sqrt{2} \)