1. The function \(f(x) = e^x + e^{-x}\) is defined for all \(x \in \mathbb{R}\).
2. To check if f is one-one: - Compute the derivative:
\[f'(x) = e^x - e^{-x}.\]
- Since \(f'(x) > 0\) for all \(x > 0\) and \(f'(x) < 0\) for \(x < 0\), \(f(x)\) is strictly increasing for \(x > 0\) and strictly decreasing for \(x < 0\). Therefore, \(f(x)\) is not one-one.
3. To check if f is onto: - The range of \(f(x)\) is:
\[f(x) = e^x + e^{-x} \ge 2 \quad \text{for all } x \in \mathbb{R}.\]
- Since \(f(x)\) does not cover all real numbers (\(f(x) \ge 2\)), \(f(x)\) is not onto.
4. Since \(f(x)\) is neither one-one nor onto, it is not bijective.
During the festival season, a mela was organized by the Resident Welfare Association at a park near the society. The main attraction of the mela was a huge swing, which traced the path of a parabola given by the equation:\[ x^2 = y \quad \text{or} \quad f(x) = x^2 \]