Question:

The focus of the parabola $y^2 - 4y - x+3=0$ is

Updated On: Jun 7, 2024
  • $\left( \frac{3}{4} , 2 \right)$
  • $\left( \frac{3}{4} , - 2 \right)$
  • $\left( 2 , \frac{3}{4} \right)$
  • $\left( \frac{-3}{4} , 2 \right)$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

$y^{2}-4 y-x+3=0$ $(y-2)^{2}-4-x+3 =0$ $(y-2)^{2}-x-1 =0$ $(y-2)^{2} =(x+1)$ Let $Y^{2}=X$ ...(i) Here, $Y=(y-2), X=(x+1)$ Vertices $(X=0, Y=0)=(2,-1)$ E (i) comparing on $y^{2}=4 a x$ $4 a=1$ $\Rightarrow \, a=\frac{1}{4}$ $\therefore$ Focus $=\left(\frac{1}{4}-1,2\right)=\left(-\frac{3}{4}, 2\right)$
Was this answer helpful?
1
2

Concepts Used:

Parabola

Parabola is defined as the locus of points equidistant from a fixed point (called focus) and a fixed-line (called directrix).

Parabola


 

 

 

 

 

 

 

 

 

Standard Equation of a Parabola

For horizontal parabola

  • Let us consider
  • Origin (0,0) as the parabola's vertex A,
  1. Two equidistant points S(a,0) as focus, and Z(- a,0) as a directrix point,
  2. P(x,y) as the moving point.
  • Let us now draw SZ perpendicular from S to the directrix. Then, SZ will be the axis of the parabola.
  • The centre point of SZ i.e. A will now lie on the locus of P, i.e. AS = AZ.
  • The x-axis will be along the line AS, and the y-axis will be along the perpendicular to AS at A, as in the figure.
  • By definition PM = PS

=> MP2 = PS2 

  • So, (a + x)2 = (x - a)2 + y2.
  • Hence, we can get the equation of horizontal parabola as y2 = 4ax.

For vertical parabola

  • Let us consider
  • Origin (0,0) as the parabola's vertex A
  1. Two equidistant points, S(0,b) as focus and Z(0, -b) as a directrix point
  2. P(x,y) as any moving point
  • Let us now draw a perpendicular SZ from S to the directrix.
  • Then SZ will be the axis of the parabola. Now, the midpoint of SZ i.e. A, will lie on P’s locus i.e. AS=AZ.
  • The y-axis will be along the line AS, and the x-axis will be perpendicular to AS at A, as shown in the figure.
  • By definition PM = PS

=> MP2 = PS2

So, (b + y)2 = (y - b)2 + x2

  • As a result, the vertical parabola equation is x2= 4by.