Let the line $\frac{x}{4} + \frac{y}{2} = 1$ meet the x-axis and y-axis at A and B, respectively. M is the midpoint of side AB, and M' is the image of the point M across the line $x + y = 1$. Let the point P lie on the line $x + y = 1$ such that $\Delta ABP$ is an isosceles triangle with $AP = BP$. Then the distance between M' and P is:
Let $ A \in \mathbb{R} $ be a matrix of order 3x3 such that $$ \det(A) = -4 \quad \text{and} \quad A + I = \left[ \begin{array}{ccc} 1 & 1 & 1 \\2 & 0 & 1 \\4 & 1 & 2 \end{array} \right] $$ where $ I $ is the identity matrix of order 3. If $ \det( (A + I) \cdot \text{adj}(A + I)) $ is $ 2^m $, then $ m $ is equal to:
A square loop of sides \( a = 1 \, {m} \) is held normally in front of a point charge \( q = 1 \, {C} \). The flux of the electric field through the shaded region is \( \frac{5}{p} \times \frac{1}{\varepsilon_0} \, {Nm}^2/{C} \), where the value of \( p \) is: