Given that, \(a = 17\), \(l = 350\) and \(d = 9\)
Let there be n terms in the A.P.
\(l = a + (n − 1) d\)
\(350 = 17 + (n − 1)9\)
\(333 = (n − 1)9\)
\(n − 1 = 37\)
\(n = 38\)
\(S_n = \frac n2[a + l]\)
\(S_n = \frac {38}{2}[17 + 350] = 19 \times 367 = 6973\)
Thus, this A.P. contains 38 terms and the sum of the terms of this A.P. is 6973.