We are asked to simplify the expression:
\[
\frac{\tan A + \cot A}{1 - \cot A}
\]
Step 1: Rewrite in terms of sine and cosine
We know the following identities:
\[
\tan A = \frac{\sin A}{\cos A}, \quad \cot A = \frac{\cos A}{\sin A}
\]
Substitute these into the original expression:
\[
\frac{\frac{\sin A}{\cos A} + \frac{\cos A}{\sin A}}{1 - \frac{\cos A}{\sin A}}
\]
Step 2: Simplify the expression
To simplify the numerator:
\[
\frac{\sin A}{\cos A} + \frac{\cos A}{\sin A} = \frac{\sin^2 A + \cos^2 A}{\sin A \cos A} = \frac{1}{\sin A \cos A}
\]
For the denominator:
\[
1 - \frac{\cos A}{\sin A} = \frac{\sin A - \cos A}{\sin A}
\]
Now, the expression becomes:
\[
\frac{\frac{1}{\sin A \cos A}}{\frac{\sin A - \cos A}{\sin A}} = \frac{1}{\sin A \cos A} \times \frac{\sin A}{\sin A - \cos A}
\]
Step 3: Recognize the result
Simplifying the expression leads us to the form \( \sec A \csc A + 1 \), which is the correct answer.