Given:
\[ \int_{0}^{n}[x]\,dx \] Since \([x]\) is the greatest integer function, we break the interval \([0, n]\) into parts:
\[ = \int_{0}^{1} 0\,dx + \int_{1}^{2} 1\,dx + \int_{2}^{3} 2\,dx + \cdots + \int_{n-1}^{n} (n-1)\,dx \] \[ = 0 + 1(2-1) + 2(3-2) + \cdots + (n-1)(n - (n-1)) = 1 + 2 + \cdots + (n-1) \] Using the formula:
\[ 1 + 2 + \cdots + (n-1) = \frac{n(n-1)}{2} \tag{i} \] Also, \[ \int_{0}^{n} \{x\}\,dx = \int_{0}^{n}(x - [x])\,dx = \int_{0}^{n} x\,dx - \int_{0}^{n} [x]\,dx \] \[ = \frac{n^2}{2} - \frac{n(n-1)}{2} = \frac{n}{2} \tag{ii} \] Now:
\[ \frac{\int_{0}^{n}[x]\,dx}{\int_{0}^{n} \{x\}\,dx} = \frac{\frac{n(n-1)}{2}}{\frac{n}{2}} = n - 1 \] Final Answer: Option (D): \(n - 1\)
Match List-I with List-II
List-I (Definite integral) | List-II (Value) |
---|---|
(A) \( \int_{0}^{1} \frac{2x}{1+x^2}\, dx \) | (I) 2 |
(B) \( \int_{-1}^{1} \sin^3x \cos^4x\, dx \) | (II) \(\log_e\!\left(\tfrac{3}{2}\right)\) |
(C) \( \int_{0}^{\pi} \sin x\, dx \) | (III) \(\log_e 2\) |
(D) \( \int_{2}^{3} \frac{2}{x^2 - 1}\, dx \) | (IV) 0 |
Choose the correct answer from the options given below:
Match List-I with List-II
List-I (Definite integral) | List-II (Value) |
---|---|
(A) \( \int_{0}^{1} \frac{2x}{1+x^2}\, dx \) | (I) 2 |
(B) \( \int_{-1}^{1} \sin^3x \cos^4x\, dx \) | (II) \(\log_e\!\left(\tfrac{3}{2}\right)\) |
(C) \( \int_{0}^{\pi} \sin x\, dx \) | (III) \(\log_e 2\) |
(D) \( \int_{2}^{3} \frac{2}{x^2 - 1}\, dx \) | (IV) 0 |
Choose the correct answer from the options given below:
A quantity \( X \) is given by: \[ X = \frac{\epsilon_0 L \Delta V}{\Delta t} \] where:
- \( \epsilon_0 \) is the permittivity of free space,
- \( L \) is the length,
- \( \Delta V \) is the potential difference,
- \( \Delta t \) is the time interval.
The dimension of \( X \) is the same as that of:
Definite integral is an operation on functions which approximates the sum of the values (of the function) weighted by the length (or measure) of the intervals for which the function takes that value.
Definite integrals - Important Formulae Handbook
A real valued function being evaluated (integrated) over the closed interval [a, b] is written as :
\(\int_{a}^{b}f(x)dx\)
Definite integrals have a lot of applications. Its main application is that it is used to find out the area under the curve of a function, as shown below: