Step 1: Total Reaction - Combining the two reactions, we get:
\(3^{3}Li^{6}\) + \(^{1}H^{2} \rightarrow 2\)\(^{2}\)\(He^{4}\)
Step 2: Calculate Energy Released (Q-value) - Using the mass-energy equivalence \(Q = \Delta m \cdot c^2\), where \(\Delta m\) is the mass defect. - Given:
\(M(^{3}Li^{6}) = 6.01690 \, \text{amu}\)
\(M(^{1}H^{2}) = 2.01471 \, \text{amu}\)
\(M(^{2}He^{4}) = 4.00388 \, \text{amu}\)
\(1 \, \text{amu} = 931.5 \, \text{MeV}\)
Step 3: Calculate Q
\(Q = \left[M(^{3}Li^{6}) + M(^{1}H^{2}) - 2 \times M(^{2}He^{4})\right] \times 931.5 \, \text{MeV}\)
\(Q = \left[6.01690 + 2.01471 - 2 \times 4.00388\right] \times 931.5 \, \text{MeV}\)
\(Q = \left[8.03161 - 8.00776\right] \times 931.5 \, \text{MeV}\)
\(Q = 0.02385 \times 931.5 \, \text{MeV}\)
\(Q = 22.22 \, \text{MeV}\)
So, the correct answer is: 22.22 MeV
Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): The density of the copper ($^{64}Cu$) nucleus is greater than that of the carbon ($^{12}C$) nucleus.
Reason (R): The nucleus of mass number A has a radius proportional to $A^{1/3}$.
In the light of the above statements, choose the most appropriate answer from the options given below:
Match the LIST-I with LIST-II
\[ \begin{array}{|l|l|} \hline \text{LIST-I} & \text{LIST-II} \\ \hline A. \ ^{236}_{92} U \rightarrow ^{94}_{38} Sr + ^{140}_{54} Xe + 2n & \text{I. Chemical Reaction} \\ \hline B. \ 2H_2 + O_2 \rightarrow 2H_2O & \text{II. Fusion with +ve Q value} \\ \hline C. \ ^3_1 H + ^2_1 H \rightarrow ^4_2 He + n & \text{III. Fission} \\ \hline D. \ ^1_1 H + ^3_1 H \rightarrow ^4_2 H + \gamma & \text{IV. Fusion with -ve Q value} \\ \hline \end{array} \]
Choose the correct answer from the options given below:
Match the following types of nuclei with examples shown: