Step 1: Total Reaction - Combining the two reactions, we get:
\(3^{3}Li^{6}\) + \(^{1}H^{2} \rightarrow 2\)\(^{2}\)\(He^{4}\)
Step 2: Calculate Energy Released (Q-value) - Using the mass-energy equivalence \(Q = \Delta m \cdot c^2\), where \(\Delta m\) is the mass defect. - Given:
\(M(^{3}Li^{6}) = 6.01690 \, \text{amu}\)
\(M(^{1}H^{2}) = 2.01471 \, \text{amu}\)
\(M(^{2}He^{4}) = 4.00388 \, \text{amu}\)
\(1 \, \text{amu} = 931.5 \, \text{MeV}\)
Step 3: Calculate Q
\(Q = \left[M(^{3}Li^{6}) + M(^{1}H^{2}) - 2 \times M(^{2}He^{4})\right] \times 931.5 \, \text{MeV}\)
\(Q = \left[6.01690 + 2.01471 - 2 \times 4.00388\right] \times 931.5 \, \text{MeV}\)
\(Q = \left[8.03161 - 8.00776\right] \times 931.5 \, \text{MeV}\)
\(Q = 0.02385 \times 931.5 \, \text{MeV}\)
\(Q = 22.22 \, \text{MeV}\)
So, the correct answer is: 22.22 MeV
Mass Defect and Energy Released in the Fission of \( ^{235}_{92}\text{U} \)
When a neutron collides with \( ^{235}_{92}\text{U} \), the nucleus gives \( ^{140}_{54}\text{Xe} \) and \( ^{94}_{38}\text{Sr} \) as fission products, and two neutrons are ejected. Calculate the mass defect and the energy released (in MeV) in the process.
Given: