The "distance of closest approach" refers to the minimum distance between the incident particle (in this case, a proton) and the nucleus due to electrostatic repulsion. This occurs when the kinetic energy of the proton is entirely converted into potential energy at the closest point.
We use the concept of energy conservation here:
\[ \text{Initial kinetic energy} = \text{Final potential energy} \]
The potential energy \( U \) at the closest distance \( r \) is given by the Coulomb force formula:
\[ U = \frac{1}{4 \pi \epsilon_0} \frac{Z e^2}{r} \]
Where:
Now, equate the initial kinetic energy to the final potential energy:
\[ K.E. = U \]
The kinetic energy \( K.E. \) is given by:
\[ K.E. = \text{Energy of the proton} = 3.95 \, \text{MeV} = 3.95 \times 10^6 \times 1.6 \times 10^{-13} \, \text{J} \]
Equating the two energies:
\[ 3.95 \times 10^6 \times 1.6 \times 10^{-13} = \frac{1}{4 \pi \epsilon_0} \frac{Z e^2}{r} \]
Substituting the known values and solving for \( r \):
\[ r = \frac{1}{4 \pi \epsilon_0} \frac{Z e^2}{K.E.} \]
After substituting values:
\[ r = \frac{(9 \times 10^9) \times (79) \times (1.6 \times 10^{-19})^2}{3.95 \times 10^6 \times 1.6 \times 10^{-13}} \, \text{m} \]
Solving for \( r \), we get:
\[ r = 28.8 \times 10^{-15} \, \text{m} = 28.8 \, \text{fm} \]
Thus, the distance of closest approach is \( 28.8 \times 10^{-15} \, \text{m} \).
A small bob A of mass m is attached to a massless rigid rod of length 1 m pivoted at point P and kept at an angle of 60° with vertical. At 1 m below P, bob B is kept on a smooth surface. If bob B just manages to complete the circular path of radius R after being hit elastically by A, then radius R is_______ m :

A ladder of fixed length \( h \) is to be placed along the wall such that it is free to move along the height of the wall.
Based upon the above information, answer the following questions:
(iii) (b) If the foot of the ladder, whose length is 5 m, is being pulled towards the wall such that the rate of decrease of distance \( y \) is \( 2 \, \text{m/s} \), then at what rate is the height on the wall \( x \) increasing when the foot of the ladder is 3 m away from the wall?