Given the equilibrium constant for the reaction:
\[\text{SO}_3 \, (g) \rightleftharpoons \text{SO}_2 \, (g) + \frac{1}{2} \text{O}_2 \, (g)\]
is \( K_c = 4.9 \times 10^{-2} \).
For the reaction:
\[2\text{SO}_2 \, (g) + \text{O}_2 \, (g) \rightleftharpoons 2\text{SO}_3 \, (g)\]
we need the equilibrium constant \( K_c' \).
Since the second reaction is the reverse and doubled version of the original reaction, we calculate \( K_c' \) as:
\[K_c' = \left( \frac{1}{K_c} \right)^2 = \left( \frac{1}{4.9 \times 10^{-2}} \right)^2\]
\[K_c' = 416.49\]
An ideal massless spring \( S \) can be compressed \( 1 \) m by a force of \( 100 \) N in equilibrium. The same spring is placed at the bottom of a frictionless inclined plane inclined at \( 30^\circ \) to the horizontal. A \( 10 \) kg block \( M \) is released from rest at the top of the incline and is brought to rest momentarily after compressing the spring by \( 2 \) m. If \( g = 10 \) m/s\( ^2 \), what is the speed of the mass just before it touches the spring?