Given the equilibrium constant for the reaction:
\[\text{SO}_3 \, (g) \rightleftharpoons \text{SO}_2 \, (g) + \frac{1}{2} \text{O}_2 \, (g)\]
is \( K_c = 4.9 \times 10^{-2} \).
For the reaction:
\[2\text{SO}_2 \, (g) + \text{O}_2 \, (g) \rightleftharpoons 2\text{SO}_3 \, (g)\]
we need the equilibrium constant \( K_c' \).
Since the second reaction is the reverse and doubled version of the original reaction, we calculate \( K_c' \) as:
\[K_c' = \left( \frac{1}{K_c} \right)^2 = \left( \frac{1}{4.9 \times 10^{-2}} \right)^2\]
\[K_c' = 416.49\]
x mg of Mg(OH)$_2$ (molar mass = 58) is required to be dissolved in 1.0 L of water to produce a pH of 10.0 at 298 K. The value of x is ____ mg. (Nearest integer) (Given: Mg(OH)$_2$ is assumed to dissociate completely in H$_2$O)
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $
Resonance in X$_2$Y can be represented as
The enthalpy of formation of X$_2$Y is 80 kJ mol$^{-1}$, and the magnitude of resonance energy of X$_2$Y is: