Given hyperbola $H: x^2 - 2y^2 - 8x + 8y + 4 = 0$
Let asymptote equation be $A: x^2 - 2y^2 - 8x + 8y + k = 0$
Find center:
\[
\frac{\partial H}{\partial x} = 2x - 8 = 0 \Rightarrow x = 4,
\quad \frac{\partial H}{\partial y} = -4y + 8 = 0 \Rightarrow y = 2
\]
Substitute $(4,2)$ into $A$:
\[
16 - 8 - 32 + 16 + k = 0 \Rightarrow k = 8
\]
So asymptotes: $x^2 - 2y^2 - 8x + 8y + 8 = 0$