Step 1: Write the given hyperbola equation
The given equation is:
\[
x^2 - 2y^2 - 8x + 8y + 4 = 0
\]
Step 2: Find the center by completing the square
Group \(x\) and \(y\) terms:
\[
(x^2 - 8x) - 2(y^2 - 4y) + 4 = 0
\]
Complete the square for \(x\):
\[
x^2 - 8x = (x - 4)^2 - 16
\]
Complete the square for \(y\):
\[
y^2 - 4y = (y - 2)^2 - 4
\]
Substitute back:
\[
(x - 4)^2 - 16 - 2\big[(y - 2)^2 - 4\big] + 4 = 0
\]
Simplify:
\[
(x - 4)^2 - 16 - 2(y - 2)^2 + 8 + 4 = 0
\]\[
(x - 4)^2 - 2(y - 2)^2 - 4 = 0
\]
Step 3: Rearrange to standard hyperbola form
\[
(x - 4)^2 - 2(y - 2)^2 = 4
\]
Divide both sides by 4:
\[
\frac{(x - 4)^2}{4} - \frac{(y - 2)^2}{2} = 1
\]
Step 4: Write the equations of asymptotes
For hyperbola \(\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1\), asymptotes are:
\[
y - k = \pm \frac{b}{a}(x - h)
\]
Here, \(a^2 = 4\), \(b^2 = 2\), so
\[
y - 2 = \pm \frac{\sqrt{2}}{2} (x - 4)
\]
Multiply both sides by 2:
\[
2(y - 2) = \pm \sqrt{2}(x - 4)
\]
Square both sides to eliminate the ±:
\[
4(y - 2)^2 = 2(x - 4)^2
\]\[
2(x - 4)^2 - 4(y - 2)^2 = 0
\]
Step 5: Expand and simplify asymptotes equation
Expand:
\[
2(x^2 - 8x + 16) - 4(y^2 - 4y + 4) = 0
\]\[
2x^2 - 16x + 32 - 4y^2 + 16y - 16 = 0
\]\[
2x^2 - 16x - 4y^2 + 16y + 16 = 0
\]
Divide entire equation by 2:
\[
x^2 - 8x - 2y^2 + 8y + 8 = 0
\]
Conclusion:
The equation of the pair of asymptotes is:
\[
x^2 - 2y^2 - 8x + 8y + 8 = 0
\]