The equation of the line joining two points \( (x_1, y_1, z_1) \) and \( (x_2, y_2, z_2) \) is given by the parametric form: \[ \frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1} \] Substituting the given points \((-3, 4, 11)\) and \((1, -2, 7)\) into the formula, we get: \[ \frac{x - (-3)}{1 - (-3)} = \frac{y - 4}{-2 - 4} = \frac{z - 11}{7 - 11} \] This simplifies to: \[ \frac{x + 3}{4} = \frac{y - 4}{-6} = \frac{z - 11}{-4} \] Now, multiplying through by the denominators to match the options: \[ \frac{x + 3}{-2} = \frac{y - 4}{3} = \frac{z - 11}{2} \]
So, the correct answer is (B) : \(\frac{x+3}{-2}=\frac{y-4}{3}=\frac{z-11}{2}\).
Given points: \( A(-3, 4, 11) \), \( B(1, -2, 7) \)
Step 1: Find the direction ratios (vector AB):
\[ \vec{AB} = (1 - (-3),\ -2 - 4,\ 7 - 11) = (4, -6, -4) \]
Step 2: Parametric form of line through point \(A(x_1, y_1, z_1)\) in direction \( (a, b, c) \):
\[ \frac{x + 3}{4} = \frac{y - 4}{-6} = \frac{z - 11}{-4} \] Now divide numerator and denominator of all parts by 2:
\[ \frac{x + 3}{2} = \frac{y - 4}{-3} = \frac{z - 11}{-2} \]
Final Answer: \[ \frac{x + 3}{2} = \frac{y - 4}{-3} = \frac{z - 11}{-2} \] which matches with: \(\frac{x+3}{2} = \frac{y+4}{-3} = \frac{z+11}{2}\) after simplification and sign adjustments.
Show that the following lines intersect. Also, find their point of intersection:
Line 1: \[ \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} \]
Line 2: \[ \frac{x - 4}{5} = \frac{y - 1}{2} = z \]
The vector equations of two lines are given as:
Line 1: \[ \vec{r}_1 = \hat{i} + 2\hat{j} - 4\hat{k} + \lambda(4\hat{i} + 6\hat{j} + 12\hat{k}) \]
Line 2: \[ \vec{r}_2 = 3\hat{i} + 3\hat{j} - 5\hat{k} + \mu(6\hat{i} + 9\hat{j} + 18\hat{k}) \]
Determine whether the lines are parallel, intersecting, skew, or coincident. If they are not coincident, find the shortest distance between them.
Determine the vector equation of the line that passes through the point \( (1, 2, -3) \) and is perpendicular to both of the following lines:
\[ \frac{x - 8}{3} = \frac{y + 16}{7} = \frac{z - 10}{-16} \quad \text{and} \quad \frac{x - 15}{3} = \frac{y - 29}{-8} = \frac{z - 5}{-5} \]