The equation of the line joining two points \( (x_1, y_1, z_1) \) and \( (x_2, y_2, z_2) \) is given by the parametric form: \[ \frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1} \] Substituting the given points \((-3, 4, 11)\) and \((1, -2, 7)\) into the formula, we get: \[ \frac{x - (-3)}{1 - (-3)} = \frac{y - 4}{-2 - 4} = \frac{z - 11}{7 - 11} \] This simplifies to: \[ \frac{x + 3}{4} = \frac{y - 4}{-6} = \frac{z - 11}{-4} \] Now, multiplying through by the denominators to match the options: \[ \frac{x + 3}{-2} = \frac{y - 4}{3} = \frac{z - 11}{2} \]
So, the correct answer is (B) : \(\frac{x+3}{-2}=\frac{y-4}{3}=\frac{z-11}{2}\).
Given points: \( A(-3, 4, 11) \), \( B(1, -2, 7) \)
Step 1: Find the direction ratios (vector AB):
\[ \vec{AB} = (1 - (-3),\ -2 - 4,\ 7 - 11) = (4, -6, -4) \]
Step 2: Parametric form of line through point \(A(x_1, y_1, z_1)\) in direction \( (a, b, c) \):
\[ \frac{x + 3}{4} = \frac{y - 4}{-6} = \frac{z - 11}{-4} \] Now divide numerator and denominator of all parts by 2:
\[ \frac{x + 3}{2} = \frac{y - 4}{-3} = \frac{z - 11}{-2} \]
Final Answer: \[ \frac{x + 3}{2} = \frac{y - 4}{-3} = \frac{z - 11}{-2} \] which matches with: \(\frac{x+3}{2} = \frac{y+4}{-3} = \frac{z+11}{2}\) after simplification and sign adjustments.
Let the lines $L_1 : \vec r = \hat i + 2\hat j + 3\hat k + \lambda(2\hat i + 3\hat j + 4\hat k)$, $\lambda \in \mathbb{R}$ and $L_2 : \vec r = (4\hat i + \hat j) + \mu(5\hat i + + 2\hat j + \hat k)$, $\mu \in \mathbb{R}$ intersect at the point $R$. Let $P$ and $Q$ be the points lying on lines $L_1$ and $L_2$, respectively, such that $|PR|=\sqrt{29}$ and $|PQ|=\sqrt{\frac{47}{3}}$. If the point $P$ lies in the first octant, then $27(QR)^2$ is equal to}
Match the following:
In the following, \( [x] \) denotes the greatest integer less than or equal to \( x \). 
Choose the correct answer from the options given below:
For x < 0:
f(x) = ex + ax
For x ≥ 0:
f(x) = b(x - 1)2