Let the required circle be:
\[
x^2 + y^2 + 2gx + 2fy = 0 \quad \text{(passes through origin)}
\]
Circle 1: \( x^2 + y^2 + 6x - 15 = 0 \)
Orthogonal circles satisfy:
\[
2gg_1 + 2ff_1 = c + c_1
\]
So for circle 1:
\[
g_1 = 3,\ f_1 = 0,\ c_1 = -15,\ c = 0
\Rightarrow 6g + 0 = -15 \Rightarrow g = -\frac{5}{2}
\]
Circle 2: \( x^2 + y^2 - 8y - 10 = 0 \Rightarrow g_1 = 0,\ f_1 = -4,\ c_1 = -10 \)
\[
0 + (-8f) = -10 \Rightarrow f = \frac{5}{4}
\]
Now plug into:
\[
x^2 + y^2 -5x + \frac{5}{2}y = 0 \Rightarrow \text{Multiply by 2: } 2x^2 + 2y^2 -10x + 5y = 0
\]