Let the DR of the normal of required plane be $< a, b, c >$
Since plane is parallel to $(3,0,-1)$
$\therefore$ normal must be perpendicular
$\therefore 3 a +0 b - c =0 \ldots$ (1)
Also, it is parallel to $(-3,2,2)$
$\therefore-3 a +2 b +2 c =0 \ldots$ (2)
From (1) and (2)
$\frac{a}{2}=\frac{-b}{6-3}=\frac{c}{6}$
$a=2, b=-3, c=6$
It passes through $(2,-1,3)$
$2(x-2)-3(y+1)+6(z-3)=0 $
$\Rightarrow 2 x-4-3 y-3+6 z-18=0 $
$\Rightarrow 2 x-3 y+6 z-25=0$