The enthalpy change equation is given as:
\(\Delta H_{600} - \Delta H_{300} = 1 \times (C_{p,\beta} - C_{p,\alpha}) (600 - 300)\)
Now, at the transition temperature, we have:
\(\Delta H_{600} = T \Delta S_{600}\)
Substitute the given values:
\(600 = 600 \times (6 - 5) = 600 \, \text{J mol}^{-1}\)
From the equation:
\(600 - \Delta H_{300} = 1 \times 1 \times 300\)
Solving for \( \Delta H_{300} \):
\(\Delta H_{300} = 600 - 300 = 300 \, \text{J mol}^{-1}\)
Thus, the enthalpy change at 300 K is: \( \Delta H_{300} = 300 \, \text{J mol}^{-1} \).
The equation for the entropy change is given as:
\[\Delta S_{600} - \Delta S_{300} = \int_{300}^{600} \frac{1 \times (C_{p,\beta} - C_{p,\alpha})}{T} dT\]Next, this simplifies to:
\(= 1 \times \int_{300}^{600} \ln \left( \frac{T_2}{T_1} \right) dT \)
Where:
Now, performing the integration:
\(\Delta S_{300} = 1 \times \ln \left( \frac{600}{300} \right)\)
This simplifies to:
\(1 - \Delta S_{300} = 1 \times \ln 2\)
Thus:
\(\Delta S_{300} = 1 - 0.69 = 0.31 \, \text{J mol}^{-1} \text{K}^{-1}\)
Therefore, the entropy change at 300 K is: \(\Delta S_{300} = 0.31 \, \text{J mol}^{-1} \text{K}^{-1}\).
Let $ S $ denote the locus of the point of intersection of the pair of lines $$ 4x - 3y = 12\alpha,\quad 4\alpha x + 3\alpha y = 12, $$ where $ \alpha $ varies over the set of non-zero real numbers. Let $ T $ be the tangent to $ S $ passing through the points $ (p, 0) $ and $ (0, q) $, $ q > 0 $, and parallel to the line $ 4x - \frac{3}{\sqrt{2}} y = 0 $.
Then the value of $ pq $ is
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.