
The enthalpy change equation is given as:
\(\Delta H_{600} - \Delta H_{300} = 1 \times (C_{p,\beta} - C_{p,\alpha}) (600 - 300)\)
Now, at the transition temperature, we have:
\(\Delta H_{600} = T \Delta S_{600}\)
Substitute the given values:
\(600 = 600 \times (6 - 5) = 600 \, \text{J mol}^{-1}\)
From the equation:
\(600 - \Delta H_{300} = 1 \times 1 \times 300\)
Solving for \( \Delta H_{300} \):
\(\Delta H_{300} = 600 - 300 = 300 \, \text{J mol}^{-1}\)
Thus, the enthalpy change at 300 K is: \( \Delta H_{300} = 300 \, \text{J mol}^{-1} \).
The equation for the entropy change is given as:
\[\Delta S_{600} - \Delta S_{300} = \int_{300}^{600} \frac{1 \times (C_{p,\beta} - C_{p,\alpha})}{T} dT\]Next, this simplifies to:
\(= 1 \times \int_{300}^{600} \ln \left( \frac{T_2}{T_1} \right) dT \)
Where:
Now, performing the integration:
\(\Delta S_{300} = 1 \times \ln \left( \frac{600}{300} \right)\)
This simplifies to:
\(1 - \Delta S_{300} = 1 \times \ln 2\)
Thus:
\(\Delta S_{300} = 1 - 0.69 = 0.31 \, \text{J mol}^{-1} \text{K}^{-1}\)
Therefore, the entropy change at 300 K is: \(\Delta S_{300} = 0.31 \, \text{J mol}^{-1} \text{K}^{-1}\).
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?