Step 1: Convert the temperature to Kelvin.
$$T(K) = T(^\circ \text{C}) + 273.15 = 77 + 273.15 = 350.15 \text{ K}$$
Step 2: Calculate the average kinetic energy in Joules.
The average kinetic energy of a monatomic gas atom is $E = \frac{3}{2} k_B T$.
$$E = \frac{3}{2} (1.38 \times 10^{-23} \text{ J K}^{-1}) (350.15 \text{ K})$$
$$E = 1.5 \times 1.38 \times 350.15 \times 10^{-23} \text{ J}$$
$$E = 724.8105 \times 10^{-23} \text{ J} = 7.248105 \times 10^{-21} \text{ J}$$
Step 3: Convert the energy from Joules to electron volts (eV).
The conversion factor is $1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$.
$$E(\text{eV}) = \frac{E(\text{J})}{1.602 \times 10^{-19} \text{ J/eV}} = \frac{7.248105 \times 10^{-21}}{1.602 \times 10^{-19}} \text{ eV}$$
$$E(\text{eV}) = 4.5244 \times 10^{-2} \text{ eV}$$
Rounding to three significant figures, the energy is $4.52 \times 10^{-2}$ eV.
Final Answer: The final answer is $\boxed{4.52 \times 10^{-2}}$