\[ E = \frac{E_0}{3} \implies V = \frac{V_0}{3} \]
\[ \frac{V_0}{3} = V_0 e^{-\frac{t}{\tau}} \]
\[ t = \tau \ln 3 \]
\[ 6.6 \times 10^{-6} = R (1.5 \times 10^{-6})(1.1) \]\[ R = \frac{6.6}{1.5} = 4 \, \Omega \]
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is:
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to: