\[ E = \frac{E_0}{3} \implies V = \frac{V_0}{3} \]
\[ \frac{V_0}{3} = V_0 e^{-\frac{t}{\tau}} \]
\[ t = \tau \ln 3 \]
\[ 6.6 \times 10^{-6} = R (1.5 \times 10^{-6})(1.1) \]\[ R = \frac{6.6}{1.5} = 4 \, \Omega \]
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: