\[ F(x) = \frac{1}{\lfloor x \rfloor^2 - 3\lfloor x \rfloor - 10}. \]
To ensure \( F(x) \) is defined, the denominator must be positive:
\[ \lfloor x \rfloor^2 - 3\lfloor x \rfloor - 10 > 0. \]
Factorize the quadratic expression:
\[ \lfloor x \rfloor^2 - 3\lfloor x \rfloor - 10 = (\lfloor x \rfloor + 2)(\lfloor x \rfloor - 5). \]
The inequality becomes:
\[ (\lfloor x \rfloor + 2)(\lfloor x \rfloor - 5) > 0. \]
The roots of the quadratic are \( \lfloor x \rfloor = -2 \) and \( \lfloor x \rfloor = 5 \). Using a sign chart:
Interval | Sign of \( (\lfloor x \rfloor + 2)(\lfloor x \rfloor - 5) \) |
---|---|
\( (-\infty, -2) \) | + |
\( (-2, 5) \) | - |
\( (5, \infty) \) | + |
The inequality is satisfied in the intervals:
\[ \lfloor x \rfloor < -2 \quad \text{or} \quad \lfloor x \rfloor > 5. \]
Since \( \lfloor x \rfloor \) is the greatest integer less than or equal to \( x \), the solution must be refined to:
\[ \lfloor x \rfloor \leq -3 \quad \text{or} \quad \lfloor x \rfloor \geq 6. \]
The corresponding intervals for \( x \) are:
\[ x \in (-\infty, -2) \cup [6, \infty). \]
\( x \in (-\infty, -2) \cup [6, \infty) \).
In the given circuit the sliding contact is pulled outwards such that the electric current in the circuit changes at the rate of 8 A/s. At an instant when R is 12 Ω, the value of the current in the circuit will be A.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to: