To find the distance, we first determine the coordinates of point \(B\) lying on the line given by:
\(\frac{x - 6}{1} = \frac{y - 4}{0} = \frac{z - 8}{3}\)
Assume:
\(B = (2\lambda + 7, -3\lambda - 2, 6\lambda + 11)\)
Point \(B\) also lies on the line:
\(\frac{x - 6}{1} = \frac{y - 4}{0} = \frac{z - 8}{3}\)
Substitute the coordinates of \(B\):
\(2\lambda + 7 = 6 \quad \Rightarrow \quad -3\lambda - 2 = 4 \quad \Rightarrow \quad 6\lambda + 11 = 8 = 0\)
Solving:
\(-3\lambda - 6 = 0 \quad \Rightarrow \quad \lambda = -2\)
Substituting \(\lambda = -2\) gives:
\(B = (3, 4, -1)\)
To find the distance \(AB\) between points \(A = (7, -2, 11)\) and \(B = (3, 4, -1)\):
\(AB = \sqrt{(7 - 3)^2 + (-2 - 4)^2 + (11 - (-1))^2}\)
\(AB = \sqrt{(4)^2 + (-6)^2 + (12)^2}\)
\(AB = \sqrt{16 + 36 + 144}\)
\(AB = \sqrt{196} = 14\)
Thus, the distance of the point \((7, -2, 11)\) from the given line is \(14\).
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: