Question:

The distance of the point (1, 2, -4) from the line x32=y33=z+56\frac{x-3}{2}=\frac{y-3}{3}=\frac{z+5}{6} is

Updated On: Apr 2, 2025
  • 2937\frac{293}{7}
  • 2937\frac{\sqrt{293}}{7}
  • 29349\frac{293}{49}
  • 29349\frac{\sqrt{293}}{49}
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

We need to find the distance of the point (1, 2, -4) from the line x32=y33=z+56\frac{x-3}{2} = \frac{y-3}{3} = \frac{z+5}{6}.

The direction vector of the line is b=(2,3,6)\vec{b} = (2, 3, 6). A point on the line is P=(3,3,5)P = (3, 3, -5).

Let the given point be A=(1,2,4)A = (1, 2, -4).

We want to find the distance from point A to the line. This can be calculated using the formula:

d=AP×bbd = \frac{|\overrightarrow{AP} \times \vec{b}|}{|\vec{b}|}

First, find the vector AP=(31,32,5(4))=(2,1,1)\overrightarrow{AP} = (3-1, 3-2, -5-(-4)) = (2, 1, -1).

Now, find the cross product AP×b\overrightarrow{AP} \times \vec{b}:

AP×b=i^j^k^211236=i^(16(1)(3))j^(26(1)(2))+k^(2312)\overrightarrow{AP} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & -1 \\ 2 & 3 & 6 \end{vmatrix} = \hat{i}(1 \cdot 6 - (-1)(3)) - \hat{j}(2 \cdot 6 - (-1)(2)) + \hat{k}(2 \cdot 3 - 1 \cdot 2)

AP×b=i^(6+3)j^(12+2)+k^(62)=9i^14j^+4k^=(9,14,4)\overrightarrow{AP} \times \vec{b} = \hat{i}(6+3) - \hat{j}(12+2) + \hat{k}(6-2) = 9\hat{i} - 14\hat{j} + 4\hat{k} = (9, -14, 4)

Now, find the magnitude of AP×b\overrightarrow{AP} \times \vec{b}:

AP×b=92+(14)2+42=81+196+16=293|\overrightarrow{AP} \times \vec{b}| = \sqrt{9^2 + (-14)^2 + 4^2} = \sqrt{81 + 196 + 16} = \sqrt{293}

Find the magnitude of b\vec{b}:

b=22+32+62=4+9+36=49=7|\vec{b}| = \sqrt{2^2 + 3^2 + 6^2} = \sqrt{4 + 9 + 36} = \sqrt{49} = 7

Now, find the distance:

d=AP×bb=2937d = \frac{|\overrightarrow{AP} \times \vec{b}|}{|\vec{b}|} = \frac{\sqrt{293}}{7}

Therefore, the distance of the point from the line is 2937\frac{\sqrt{293}}{7}.

Thus, the correct option is (B) 2937\frac{\sqrt{293}}{7}.

Was this answer helpful?
0
0

Top Questions on Three Dimensional Geometry

View More Questions