Step 1: Recall formula of dynamic viscosity. Dynamic viscosity (\(\eta\)) is defined as: \[ \eta = \frac{\text{Shear Stress}}{\text{Velocity Gradient}} \]
Step 2: Dimension of shear stress. \[ \text{Shear stress} = \frac{\text{Force}}{\text{Area}} \] Force has dimension \( MLT^{-2} \). Area has dimension \( L^2 \). So, \[ [\text{Shear stress}] = \frac{MLT^{-2}}{L^2} = M L^{-1} T^{-2} \]
Step 3: Dimension of velocity gradient. \[ \text{Velocity Gradient} = \frac{\text{Velocity}}{\text{Length}} \] Velocity has dimension \( L T^{-1} \). So, \[ [\text{Velocity Gradient}] = \frac{LT^{-1}}{L} = T^{-1} \]
Step 4: Dimension of viscosity. \[ [\eta] = \frac{M L^{-1} T^{-2}}{T^{-1}} = M L^{-1} T^{-1} \]
Final Answer: \[ \boxed{M^1 L^{-1} T^{-1}} \]
A color model is shown in the figure with color codes: Yellow (Y), Magenta (M), Cyan (Cy), Red (R), Blue (Bl), Green (G), and Black (K). Which one of the following options displays the color codes that are consistent with the color model?