Step 1: Recall the definition of Young's modulus.
Young's modulus \(E\) is the ratio of stress to strain:
\[
E = \frac{\sigma}{\varepsilon}
\]
where,
\(\sigma =\) axial stress,
\(\varepsilon =\) axial strain.
Step 2: Substitute given values.
Given uniaxial compressive strength (peak stress):
\[
\sigma = 200 \, \text{MPa}
\]
Axial strain at failure:
\[
\varepsilon = 0.005
\]
Step 3: Calculate Young's modulus.
\[
E = \frac{\sigma}{\varepsilon} = \frac{200 \, \text{MPa}}{0.005}
\]
\[
E = 40,000 \, \text{MPa}
\]
Step 4: Convert to GPa.
Since \(1 \, \text{GPa} = 1000 \, \text{MPa}\):
\[
E = \frac{40,000}{1000} = 40 \, \text{GPa}
\]
Final Answer:
\[
\boxed{40 \, \text{GPa}}
\]