Step 1: Principal stresses
Principal stresses are the eigenvalues of the stress tensor $\sigma$. We solve:
\[
\det(\sigma - \lambda I) = 0
\]
Step 2: Write matrix $(\sigma - \lambda I)$
\[
\sigma - \lambda I =
\begin{bmatrix}
1-\lambda & 0 & \sqrt{2}
0 & 1-\lambda & 0
\sqrt{2} & 0 & -\lambda
\end{bmatrix}
\]
Step 3: Determinant expansion
\[
\det(\sigma - \lambda I) =
(1-\lambda)\big[ (1-\lambda)(-\lambda) - (0)(0) \big] - 0 + \sqrt{2}\big[ 0 - (1-\lambda)\sqrt{2} \big]
\]
Simplify:
\[
= (1-\lambda)(-(\lambda)(1-\lambda)) + \sqrt{2} \big[ - (1-\lambda)\sqrt{2} \big]
\]
\[
= -(1-\lambda)^2 \lambda - 2(1-\lambda)
\]
Factor:
\[
= -(1-\lambda)\big[ (1-\lambda)\lambda + 2 \big]
\]
Step 4: Characteristic equation
\[
-(1-\lambda)(\lambda^2 - \lambda + 2) = 0
\]
So eigenvalues:
\[
\lambda_1 = 1, \quad \lambda_{2,3} = \frac{1 \pm \sqrt{1-8}}{2} = \frac{1 \pm i\sqrt{7}}{2}
\]
Step 5: Reality check
Stress tensors are symmetric $\Rightarrow$ eigenvalues must be real. Let us re-check carefully.
\[
\sigma =
\begin{bmatrix}
1 & 0 & \sqrt{2}
0 & 1 & 0
\sqrt{2} & 0 & 0
\end{bmatrix}
\]
is symmetric. Let's compute again.
Step 6: Determinant carefully
\[
\det(\sigma - \lambda I) =
\begin{vmatrix}
1-\lambda & 0 & \sqrt{2}
0 & 1-\lambda & 0
\sqrt{2} & 0 & -\lambda
\end{vmatrix}
\]
Expanding along the second row:
\[
= (1-\lambda)\begin{vmatrix} 1-\lambda & \sqrt{2}
\sqrt{2} & -\lambda \end{vmatrix}
\]
\[
= (1-\lambda)[(1-\lambda)(- \lambda) - ( \sqrt{2}\cdot \sqrt{2})]
\]
\[
= (1-\lambda)[ -\lambda(1-\lambda) - 2 ]
\]
\[
= (1-\lambda)( -\lambda + \lambda^2 - 2 )
\]
\[
= (1-\lambda)(\lambda^2 - \lambda - 2)
\]
\[
= (1-\lambda)(\lambda - 2)(\lambda + 1)
\]
Step 7: Eigenvalues
Thus:
\[
\lambda_1 = 1, \quad \lambda_2 = 2, \quad \lambda_3 = -1
\]
Step 8: Maximum principal stress
The maximum principal stress = largest eigenvalue =
\[
\boxed{2.0 \, \text{MPa}}
\]