Step 1: Read the bulk (initial) composition from point X.
Point \(X\) lies at \(\approx 60\) wt.% \(Q\) (hence \(\approx 40\) wt.% \(P\)). Therefore option (A) stating “40 wt.% \(Q\)” is false.
Step 2: Solid in equilibrium with the liquid at \(Y\).
At temperature \(Y\) (on the liquidus), draw the tie–line to the solidus on the right-hand side. The intercept on the solidus lies in the N\textsubscript{ss} field at \(\approx 90\) wt.% \(Q\) (\(\approx 10\) wt.% \(P\)). Hence the solid coexisting with the liquid at \(Y\) is \(\sim\)N\textsubscript{ss}(10\(P\)–90\(Q\)), so (B) is correct.
Step 3: Bulk composition after equilibrium crystallization.
Under \emph{equilibrium} (batch) crystallization, the bulk composition of the \emph{final aggregate of solids} must equal the initial bulk composition of the system. Since \(X\) is \(\approx 40\,P\)–\(60\,Q\), the final solid aggregate is also \(40\) wt.% \(P\) and \(60\) wt.% \(Q\). Thus (C) is correct.
Step 4: Proportions of M\textsubscript{ss and N\textsubscript{ss} at 750\,$^\circ$C (lever rule).}
At \(750\,^\circ\mathrm{C}\) the horizontal tie–line intersects the solvus at \(\approx 40\) wt.% \(Q\) (M\textsubscript{ss}) and \(\approx 70\) wt.% \(Q\) (N\textsubscript{ss}). For the bulk \(C_0 = 60\) wt.% \(Q\):
\[
\text{fraction of M}_{ss}=\frac{C_N-C_0}{C_N-C_M}=\frac{70-60}{70-40}=\frac{10}{30}=\frac{1}{3},\quad
\text{fraction of N}_{ss}=\frac{C_0-C_M}{C_N-C_M}=\frac{60-40}{70-40}=\frac{20}{30}=\frac{2}{3}.
\]
Hence \( \text{M}_{ss} : \text{N}_{ss} = 1:2\). Therefore (D) is correct.
\[
\boxed{\text{Correct statements: (B), (C), and (D).}}
\]