Step 1: Simplify using row operations.
Start with
\[
\begin{pmatrix}
2021 & 2020 & 2020 & 2020 \\
2021 & 2021 & 2020 & 2020 \\
2021 & 2021 & 2021 & 2020 \\
2021 & 2021 & 2021 & 2021
\end{pmatrix}.
\]
Perform successive row differences:
\[
R_2 \to R_2 - R_1,\qquad
R_3 \to R_3 - R_2 \text{ (original)},\qquad
R_4 \to R_4 - R_3 \text{ (original)}.
\]
This gives the upper-triangular matrix
\[
\begin{pmatrix}
2021 & 2020 & 2020 & 2020 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}.
\]
Step 2: Compute determinant.
For an upper-triangular matrix the determinant is the product of diagonal entries:
\[
\det = 2021 \times 1 \times 1 \times 1 = 2021.
\]
Step 3: Conclusion.
Hence, the determinant is \(\boxed{2021}.\)