The given determinant is: \[ \begin{vmatrix} x+1 & x-1 \\ x^2+x+1 & x^2-x+1 \end{vmatrix}. \]
Using the formula for the determinant of a \(2 \times 2\) matrix: \[ \text{Determinant} = \text{(Diagonal 1 product)} - \text{(Diagonal 2 product)}. \]
We calculate: \[ \text{Diagonal 1 product} = (x+1)(x^2-x+1), \] \[ \text{Diagonal 2 product} = (x-1)(x^2+x+1). \]
Expanding each term: \[ (x+1)(x^2-x+1) = x^3 - x^2 + x + x^2 - x + 1 = x^3 + x + 1, \] \[ (x-1)(x^2+x+1) = x^3 + x^2 + x - x^2 - x - 1 = x^3 - 1. \]
Subtracting the two products: \[ \text{Determinant} = (x^3 + x + 1) - (x^3 - 1) = x^3 + x + 1 - x^3 + 1 = 2. \]
Hence, the value of the determinant is \(2\), and the correct answer is (B).
Let $ A = \begin{bmatrix} 2 & 2 + p & 2 + p + q \\4 & 6 + 2p & 8 + 3p + 2q \\6 & 12 + 3p & 20 + 6p + 3q \end{bmatrix} $ If $ \text{det}(\text{adj}(\text{adj}(3A))) = 2^m \cdot 3^n, \, m, n \in \mathbb{N}, $ then $ m + n $ is equal to: