Given three hyperbolas:
A. A hyperbola whose distance between foci is three times the distance between its directrices.
B. A hyperbola in which the transverse axis is twice the conjugate axis.
C. A hyperbola with asymptotes \( x + y + 1 = 0 \) and \( x - y + 3 = 0 \).
We need to arrange them in descending order of their eccentricities.
Step 1: Recall eccentricity \( e \) of a hyperbola is related to parameters:
For hyperbola \( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \), eccentricity:
\[
e = \sqrt{1 + \frac{b^2}{a^2}}
\]
and transverse axis length \( 2a \), conjugate axis length \( 2b \).
Step 2: Hyperbola A:
Distance between foci = \( 2ae \).
Distance between directrices = \( \frac{2a}{e} \).
Given:
\[
2ae = 3 \times \frac{2a}{e} \implies 2ae = \frac{6a}{e}
\]
Divide both sides by \( 2a \):
\[
e = \frac{3}{e} \implies e^2 = 3 \implies e = \sqrt{3}
\]
Step 3: Hyperbola B:
Transverse axis = \( 2a \), conjugate axis = \( 2b \), with given ratio:
\[
2a = 2 \times (2b) \implies a = 2b
\]
Calculate eccentricity:
\[
e = \sqrt{1 + \frac{b^2}{a^2}} = \sqrt{1 + \frac{b^2}{(2b)^2}} = \sqrt{1 + \frac{1}{4}} = \sqrt{\frac{5}{4}} = \frac{\sqrt{5}}{2} \approx 1.118
\]
Step 4: Hyperbola C:
Asymptotes are:
\[
x + y + 1 = 0 \quad \Rightarrow \quad y = -x - 1
\]
\[
x - y + 3 = 0 \quad \Rightarrow \quad y = x + 3
\]
Slopes of asymptotes are \( m_1 = -1 \) and \( m_2 = 1 \).
For hyperbola \( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \), asymptotes are:
\[
y = \pm \frac{b}{a} x
\]
So:
\[
\frac{b}{a} = 1 \implies b = a
\]
Calculate eccentricity:
\[
e = \sqrt{1 + \frac{b^2}{a^2}} = \sqrt{1 + 1} = \sqrt{2} \approx 1.414
\]
Step 5: Arrange eccentricities in descending order:
\[
e_A = \sqrt{3} \approx 1.732 \gt e_C = \sqrt{2} \approx 1.414 \gt e_B = \frac{\sqrt{5}}{2} \approx 1.118
\]
Final order:
\[
\boxed{A, C, B}
\]