The given function is:
\[
f(x) = \sin(x^2).
\]
To find the derivative of \( f(x) \) with respect to \( x \), we use the chain rule:
\[
f'(x) = \frac{d}{dx}[\sin(x^2)] = \cos(x^2) \cdot \frac{d}{dx}[x^2].
\]
The derivative of \( x^2 \) with respect to \( x \) is:
\[
\frac{d}{dx}[x^2] = 2x.
\]
Thus:
\[
f'(x) = \cos(x^2) \cdot 2x.
\]
At \( x = \sqrt{\pi} \), substitute \( x = \sqrt{\pi} \) into the expression for \( f'(x) \):
\[
f'(\sqrt{\pi}) = \cos((\sqrt{\pi})^2) \cdot 2\sqrt{\pi}.
\]
Simplify \( (\sqrt{\pi})^2 \) to \( \pi \):
\[
f'(\sqrt{\pi}) = \cos(\pi) \cdot 2\sqrt{\pi}.
\]
The value of \( \cos(\pi) \) is \( -1 \). Therefore:
\[
f'(\sqrt{\pi}) = -1 \cdot 2\sqrt{\pi} = -2\sqrt{\pi}.
\]
Hence, the correct answer is (C) \(-2\sqrt{\pi}\).