The given function is: \[ f(x) = \sin(x^2). \]
Differentiate \( f(x) \) w.r.t. \( x \): \[ \frac{d}{dx} [\sin(x^2)] = \cos(x^2) \cdot \frac{d}{dx}(x^2) = \cos(x^2) \cdot 2x. \] At \( x = \sqrt{\pi} \): \[ \frac{d}{dx} [\sin(x^2)] = 2x \cos(x^2) \quad \text{and substitute } x = \sqrt{\pi}: \] \[ \frac{d}{dx} [\sin(x^2)] = 2\sqrt{\pi} \cos(\pi). \] Since \( \cos(\pi) = -1 \): \[ \frac{d}{dx} [\sin(x^2)] = 2\sqrt{\pi} \cdot (-1) = -2\sqrt{\pi}. \]
Therefore, the correct answer is (C) \( -2\sqrt{\pi} \).
If vector \( \mathbf{a} = 3 \hat{i} + 2 \hat{j} - \hat{k} \) \text{ and } \( \mathbf{b} = \hat{i} - \hat{j} + \hat{k} \), then which of the following is correct?