You are given a dipole of charge \( +q \) and \( -q \) separated by a distance \( 2l \). A sphere 'A' of radius \( R \) passes through the centre of the dipole as shown below and another sphere 'B' of radius \( 2R \) passes through the charge \( +q \). Then the electric flux through the sphere A is
The Second-Order Derivative is the derivative of the first-order derivative of the stated (given) function. For instance, acceleration is the second-order derivative of the distance covered with regard to time and tells us the rate of change of velocity.
As well as the first-order derivative tells us about the slope of the tangent line to the graph of the given function, the second-order derivative explains the shape of the graph and its concavity.
The second-order derivative is shown using \(f’’(x)\text{ or }\frac{d^2y}{dx^2}\).