Step 1: Differentiate both sides Given: \[ y = (\tan^{-1} 2x)^2 + (\cot^{-1} 2x)^2. \] Differentiate with respect to \( x \), \[ \frac{dy}{dx} = 2 (\tan^{-1} 2x) \cdot \frac{1}{1 + (2x)^2} \cdot 2 + 2 (\cot^{-1} 2x) \cdot \frac{-1}{1 + (2x)^2} \cdot 2. \] Since, \[ \tan^{-1} a + \cot^{-1} a = \frac{\pi}{2}, \] \[ \frac{dy}{dx} = 0. \] Step 2: Differentiate again \[ \frac{d^2y}{dx^2} = -\frac{8x}{(1 + 4x^2)^2}. \] Multiplying by \( (1+4x^2)^2 \) and subtracting 16, \[ (1+4x^2)^2 y'' - 16 = -8x(1 + 4x^2) y'. \]
Which of the following are ambident nucleophiles?
[A.] CN$^{\,-}$
[B.] CH$_{3}$COO$^{\,-}$
[C.] NO$_{2}^{\,-}$
[D.] CH$_{3}$O$^{\,-}$
[E.] NH$_{3}$
Identify the anomers from the following.

The standard Gibbs free energy change \( \Delta G^\circ \) of a cell reaction is \(-301 { kJ/mol}\). What is \( E^\circ \) in volts?
(Given: \( F = 96500 { C/mol}\), \( n = 2 \))