We need to determine which function’s second derivative equals \(5^x\). Let us check each option.
For (1) : \(5^x \ln(5)\):
\[ \frac{d}{dx} \left(5^x \ln(5)\right) = 5^x (\ln(5))^2 \]
\[ \frac{d^2}{dx^2} \left(5^x \ln(5)\right) = 5^x (\ln(5))^3 \neq 5^x \]
For (2) : \(5^x (\ln(5))^2\):
\[ \frac{d}{dx} \left(5^x (\ln(5))^2\right) = 5^x (\ln(5))^3 \]
\[ \frac{d^2}{dx^2} \left(5^x (\ln(5))^2\right) = 5^x (\ln(5))^4 \neq 5^x \]
For (3) : \(\frac{5^x}{\ln(5)}\):
\[ \frac{d}{dx} \left(\frac{5^x}{\ln(5)}\right) = 5^x \]
\[ \frac{d^2}{dx^2} \left(\frac{5^x}{\ln(5)}\right) = 5^x \ln(5) \neq 5^x \]
For (4) : \(\frac{5^x}{(\ln(5))^2}\):
\[ \frac{d}{dx} \left(\frac{5^x}{(\ln(5))^2}\right) = \frac{5^x \ln(5)}{(\ln(5))^2} \]
\[ \frac{d^2}{dx^2} \left(\frac{5^x}{(\ln(5))^2}\right) = 5^x \]
Thus, the correct answer is:
\[ \frac{5^x}{(\ln(5))^2} \]