Step 1: Convert the Integral Equation to a Differential Equation:
We are given an equation involving an integral of an unknown function \(f(x)\). We can convert this to a differential equation by differentiating both sides with respect to x, using the Fundamental Theorem of Calculus (Leibniz's rule).
Given: \(6\int_{1}^{x} f(t)dt = 3x f(x) + x^3 - 4\)
Differentiating both sides w.r.t x:
\[ \frac{d}{dx}\left(6\int_{1}^{x} f(t)dt\right) = \frac{d}{dx}(3x f(x) + x^3 - 4) \]
\[ 6f(x) = [3 \cdot f(x) + 3x \cdot f'(x)] + 3x^2 \]
\[ 6f(x) = 3f(x) + 3xf'(x) + 3x^2 \]
Step 2: Solve the Differential Equation:
Rearrange the equation to form a standard linear differential equation.
\[ 3f(x) - 3xf'(x) = 3x^2 \]
\[ f(x) - xf'(x) = x^2 \Rightarrow xf'(x) - f(x) = -x^2 \]
Let \(y = f(x)\). The equation is \(x\frac{dy}{dx} - y = -x^2\).
Divide by x (since \(x \geq 1\)):
\[ \frac{dy}{dx} - \frac{1}{x}y = -x \]
This is a linear first-order DE. The integrating factor (I.F.) is \(e^{\int -1/x dx} = e^{-\ln x} = 1/x\).
The solution is \(y \cdot (\text{I.F.}) = \int Q(x) \cdot (\text{I.F.}) dx + C\).
\[ y \cdot \frac{1}{x} = \int (-x) \cdot \frac{1}{x} dx + C = \int -1 dx + C \]
\[ \frac{y}{x} = -x + C \Rightarrow y = -x^2 + Cx \]
So, \(f(x) = -x^2 + Cx\).
Step 3: Find the Constant of Integration C:
We can find C by using the original equation. Substitute \(x=1\) into the original equation:
\[ 6\int_{1}^{1} f(t)dt = 3(1)f(1) + 1^3 - 4 \]
\[ 6(0) = 3f(1) - 3 \Rightarrow 3f(1) = 3 \Rightarrow f(1) = 1 \]
Now, use this condition in our solution for \(f(x)\):
\[ f(1) = -1^2 + C(1) = 1 \Rightarrow -1 + C = 1 \Rightarrow C = 2 \]
Therefore, the specific solution is \(f(x) = -x^2 + 2x\).
Step 4: Calculate the Final Value:
We need to find \(f(2) - f(3)\).
\[ f(2) = -(2)^2 + 2(2) = -4 + 4 = 0 \]
\[ f(3) = -(3)^2 + 2(3) = -9 + 6 = -3 \]
\[ f(2) - f(3) = 0 - (-3) = 3 \]