The decrease in each day in the Uranium mass of the material in a Uranium reactor operating at a power of 12 MW is (Energy released in one \(^{92}U\) fission is about 200 MeV)
Show Hint
The mass loss in a nuclear reaction can be calculated using the energy released and converting it using Einstein’s equation \( E = mc^2 \).
Step 1: Energy released per fission of Uranium \( ^{92} U \) is 200 MeV.
Step 2: Power given as 12 MW. We convert it into joules per second:
\[
P = 12 \times 10^6 \text{ J/s}
\]
Step 3: Convert the energy released per fission into joules:
\[
200 \text{ MeV} = 200 \times 1.6 \times 10^{-13} \text{ J}
\]
Step 4: Calculate the number of fissions per second:
\[
\text{Number of fissions per second} = \frac{12 \times 10^6}{200 \times 1.6 \times 10^{-13}} = 3.75 \times 10^{13} \text{ fissions per second}
\]
Step 5: Total mass lost per second:
\[
\text{Mass lost} = 3.75 \times 10^{13} \times 2.68 \times 10^{-25} \text{ kg} \quad \Rightarrow \quad \text{Mass lost} = 12.64 \times 10^{-2} \text{ kg}
\]
Thus, the correct answer is option (4), \( 12.64 \) g.