Step 1: Recall the de-Broglie wavelength formula.
The de-Broglie wavelength (\(\lambda\)) of a particle is given by:
\[
\lambda = \frac{h}{p} = \frac{h}{mv}
\]
where \(h\) is Planck's constant, \(m\) is the mass of the particle, and \(v\) is its velocity.
Step 2: List the required constants and given values.
- Planck's constant, \(h \approx 6.626 \times 10^{-34} \, \text{J}\cdot\text{s}\).
- Mass of an electron, \(m_e \approx 9.11 \times 10^{-31} \, \text{kg}\).
- Velocity of the electron, \(v = 10^7 \, \text{m/s}\).
Step 3: Substitute the values and calculate the wavelength.
\[
\lambda = \frac{6.626 \times 10^{-34} \, \text{J}\cdot\text{s}}{(9.11 \times 10^{-31} \, \text{kg}) \times (10^7 \, \text{m/s})}
\]
\[
\lambda = \frac{6.626}{9.11} \times 10^{-34 - (-31) - 7} \, \text{m}
\]
\[
\lambda \approx 0.727 \times 10^{-10} \, \text{m}
\]
\[
\lambda \approx 7.27 \times 10^{-11} \, \text{m}
\]
This value is approximately \(7.3 \times 10^{-11}\) m.