- Statement I: This is a restatement of the Heisenberg Uncertainty Principle, which asserts that it is impossible to precisely determine both the position and the momentum of a particle simultaneously. This statement is true.
- Statement II: The Heisenberg Uncertainty Principle provides the relationship between the uncertainty in position (\( \Delta x \)) and momentum (\( \Delta p \)), given by: \[ \Delta x \Delta p \geq \frac{h}{4\pi} \] For an electron, if the uncertainties in position and momentum are equal, the uncertainty in velocity \( \Delta v \) can be expressed as: \[ \Delta v = \frac{\Delta p}{m} \geq \sqrt{\frac{h}{\pi}} \times \frac{1}{2m} \] This statement is also correct.
Therefore, the correct answer is \( \boxed{(2)} \) Both Statement I and Statement II are true.

Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Method used for separation of mixture of products (B and C) obtained in the following reaction is: 