- Statement I: This is a restatement of the Heisenberg Uncertainty Principle, which asserts that it is impossible to precisely determine both the position and the momentum of a particle simultaneously. This statement is true.
- Statement II: The Heisenberg Uncertainty Principle provides the relationship between the uncertainty in position (\( \Delta x \)) and momentum (\( \Delta p \)), given by: \[ \Delta x \Delta p \geq \frac{h}{4\pi} \] For an electron, if the uncertainties in position and momentum are equal, the uncertainty in velocity \( \Delta v \) can be expressed as: \[ \Delta v = \frac{\Delta p}{m} \geq \sqrt{\frac{h}{\pi}} \times \frac{1}{2m} \] This statement is also correct.
Therefore, the correct answer is \( \boxed{(2)} \) Both Statement I and Statement II are true.

Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.