Given parametric curve: $x(t), y(t)$.
\[
\frac{dy}{dx} = \frac{dy/dt}{dx/dt} \Rightarrow \text{Curve is decreasing when } \frac{dy}{dt}<0 \text{ (since } \frac{dx}{dt}>0)
\]
Compute:
\[
\frac{dx}{dt} = 5t^4 + 15t^2 + 20>0 \text{ for all } t
\]
\[
\frac{dy}{dt} = 12t^2 - 6t - 18 = 6(2t^2 - t - 3)
\]
Solve $\frac{dy}{dt}<0$:
\[
2t^2 - t - 3<0 \Rightarrow (2t + 3)(t - 1)<0 \Rightarrow t \in (-1, \frac{3}{2})
\]