For $L_1: ax - 3y + 5 = 0$: - X-intercept ($p$):
Set $y = 0$, $ax + 5 = 0$, $p = -\frac{5}{a}$.
- Y-intercept ($q$): Set $x = 0$, $-3y + 5 = 0$, $q = \frac{5}{3}$. For $L_2: 4x - 6y + 8 = 0$ or $2x - 3y + 4 = 0$:
- X-intercept ($m$): Set $y = 0$, $2x + 4 = 0$, $m = -2$.
- Y-intercept ($n$): Set $x = 0$, $-3y + 4 = 0$, $n = \frac{4}{3}$.
Since $L_1$ and $L_2$ are parallel, their slopes are equal.
Slope of $L_1$: $\frac{a}{3}$. Slope of $L_2$: $\frac{2}{3}$.
Thus: \[ \frac{a}{3} = \frac{2}{3} \implies a = 2 \] So, $p = -\frac{5}{2}$, $q = \frac{5}{3}$.
Points are $\left( -\frac{5}{2}, \frac{5}{3} \right)$ and $\left( -2, \frac{4}{3} \right)$.
Slope of the line through these points: \[ m = \frac{\frac{4}{3} - \frac{5}{3}}{-2 - \left( -\frac{5}{2} \right)} = \frac{-\frac{1}{3}}{\frac{1}{2}} = -\frac{2}{3} \] Equation using point $\left( -2, \frac{4}{3} \right)$: \[ y - \frac{4}{3} = -\frac{2}{3} (x + 2) \] \[ 3y - 4 = -2x - 4 \implies 2x + 3y = 0 \] Option (2) is correct. Options (1), (3), and (4) do not satisfy the points or slope.
If \( \vec{u}, \vec{v}, \vec{w} \) are non-coplanar vectors and \( p, q \) are real numbers, then the equality:
\[ [3\vec{u} \quad p\vec{v} \quad p\vec{w}] - [p\vec{v} \quad \vec{w} \quad q\vec{u}] - [2\vec{w} \quad q\vec{v} \quad q\vec{u}] = 0 \]
holds for:
Statement-I: In the interval \( [0, 2\pi] \), the number of common solutions of the equations
\[ 2\sin^2\theta - \cos 2\theta = 0 \]
and
\[ 2\cos^2\theta - 3\sin\theta = 0 \]
is two.
Statement-II: The number of solutions of
\[ 2\cos^2\theta - 3\sin\theta = 0 \]
in \( [0, \pi] \) is two.
If \( A \) and \( B \) are acute angles satisfying
\[ 3\cos^2 A + 2\cos^2 B = 4 \]
and
\[ \frac{3 \sin A}{\sin B} = \frac{2 \cos B}{\cos A}, \]
Then \( A + 2B = \ ? \)
If
\[ \sin \theta + 2 \cos \theta = 1 \]
and
\[ \theta \text{ lies in the 4\textsuperscript{th} quadrant (not on coordinate axes), then } 7 \cos \theta + 6 \sin \theta =\ ? \]