Rubidium (Rb) has the electron configuration: [Kr]5s1.
For the valence electron in the 5s orbital: - Principal quantum number, n = 5. - Azimuthal quantum number, l = 0 (since it is an s-orbital).
Magnetic quantum number, m = 0 (as m can range from –l to +l, and l = 0 allows only m = 0).
Spin quantum number, s = \(+\frac{1}{2}\) (or \(-\frac{1}{2}\) as it can have either spin).
Thus, the correct set of quantum numbers is (5, 0, 0, \(+\frac{1}{2}\)).
So, the correct answer is: 5, 0, 0, \(+\frac{1}{2}\)
The energy of an electron in first Bohr orbit of H-atom is $-13.6$ eV. The magnitude of energy value of electron in the first excited state of Be$^{3+}$ is _____ eV (nearest integer value)
Correct statements for an element with atomic number 9 are
A. There can be 5 electrons for which $ m_s = +\frac{1}{2} $ and 4 electrons for which $ m_s = -\frac{1}{2} $
B. There is only one electron in $ p_z $ orbital.
C. The last electron goes to orbital with $ n = 2 $ and $ l = 1 $.
D. The sum of angular nodes of all the atomic orbitals is 1.
Choose the correct answer from the options given below:
Which of the following is/are correct with respect to the energy of atomic orbitals of a hydrogen atom?
(A) \( 1s<2s<2p<3d<4s \)
(B) \( 1s<2s = 2p<3s = 3p \)
(C) \( 1s<2s<2p<3s<3p \)
(D) \( 1s<2s<4s<3d \)
Choose the correct answer from the options given below:

Two cells of emf 1V and 2V and internal resistance 2 \( \Omega \) and 1 \( \Omega \), respectively, are connected in series with an external resistance of 6 \( \Omega \). The total current in the circuit is \( I_1 \). Now the same two cells in parallel configuration are connected to the same external resistance. In this case, the total current drawn is \( I_2 \). The value of \( \left( \frac{I_1}{I_2} \right) \) is \( \frac{x}{3} \). The value of x is 1cm.
If $ \theta \in [-2\pi,\ 2\pi] $, then the number of solutions of $$ 2\sqrt{2} \cos^2\theta + (2 - \sqrt{6}) \cos\theta - \sqrt{3} = 0 $$ is:
The term independent of $ x $ in the expansion of $$ \left( \frac{x + 1}{x^{3/2} + 1 - \sqrt{x}} \cdot \frac{x + 1}{x - \sqrt{x}} \right)^{10} $$ for $ x>1 $ is: