
Let's analyze the stability of the given carbocations:
A. Triphenyl carbocation:
The positive charge is stabilized by resonance with three phenyl rings.
B. Diphenyl carbocation:
The positive charge is stabilized by resonance with two phenyl rings.
C. Tropylium carbocation:
This is a cyclic carbocation with 6 π electrons. It is aromatic and highly stable due to resonance and delocalization of charge.
D. Secondary carbocation:
This is a relatively simple carbocation stabilized mainly by the inductive effect of alkyl groups.
The stability of carbocations increases with the number of alkyl groups attached to the positively charged carbon. Additionally, resonance stabilization significantly enhances the stability of the carbocation.
Final Order of Stability:
$ C > A > B > D $
Final Answer:
The final answer is $ C > A > B > D $.
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
Predict the major product $ P $ in the following sequence of reactions:
(i) HBr, benzoyl peroxide
(ii) KCN
(iii) Na(Hg), $C_{2}H_{5}OH$
Nature of compounds TeO₂ and TeH₂ is___________ and ______________respectively.
The magnitude of heat exchanged by a system for the given cyclic process ABC (as shown in the figure) is (in SI units):
